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1 Outer measure

Definition. Lebesgue Outer Measure:
In R!, define measure of a interval I := (a,b);|I| = b—a and for a set S € 2%, outer measure

m*(S) = inf{) _|L| st. U2, I; > 5}
i=1
Analogously, In R™, hyper-rectangle R := (ay, b;) X ...(an, b,) and |R| = (b —ay) X ... X (b, —
an).and for a set S € 2" outer measure
m*(S) = inf{d _|Ri s.t. U2, R D S}
i=1
We have the following properties for outer measure:
Theorem 1.1. Propertied of Lebesgue Outer measure:
e m*"(2@)=0
e m"(A) <m*(B)ift AC B
Definition. Zero set: A set S € (), if its outer measure is zero, we call it a zero set.
Proposition 1.1. Countable union of zero set is still measured zero

Proof. Given the permutation of set, and for any number € > 0. Cover i —th set with e/2".
Then the outer measur of the set union is smaller than e. O

Theorem 1.2. Bounded Closed box is still the same size as its open counter part in R”.



Proof. When n = 1, and B = [a,b] m*(B) < b — a from e—principle. For the reverse
inequality, since B is compact, for all open interval covering, we have a finite subcovering
for B. Suppose the subcovering is {1, ..., In}. If N =1, || > (b — a) trivially.

Suppose we know the length sum of a covering by N intervals is bigger than (b — a) for
any bounded closed interval, then for a N + 1 covering of B, suppose the interval that covers
ais Iy : (ag,by). by > b, SNV L| > (b — a) trivially.

Other wise, we have that B/(a1,b) = [c,b] is covered by N interval thus S || >
(b—c)and |I;] > (a—c¢), so the sum of length is still greater or equal to b — a. By induction,
the result follows.

When n > 1, m*(B) < [[;_,(b; — ;) = |B| from e—principle. For the reverse inequality,
with Lebesuge number lemma, we have a A s.t. every cube with diameter smaller then A
will fall in a open cube.

Suppose an arbitrary open cubes covering C' induce a Lebesgue number A We may par-
tition on B s.t. every small cube with diameter smaller then A. Say each small cube is s;,
then we have Y |s;| = |B| and ) sil <|Cy|. We have that

SZ‘CC»;

Bl<Y Y Isl< Yl

i sp€eC; %

2 Measurablility

Definition. Abstract Outer Measure:
Any measure that satisfy Properties of Theorem is a Abstract Outer Measure

Definition. Measurable set (Caratheodory’s criterion): for any subset A of Q, m*A =
m*ANE+m*AN E° Then E is measurable. We call the collection of measurable set (of
) M

Example. Non-measurable set:
Definition. 0—Algebra o:

1. 9,Q€o0

2. A€o, A€o

3. Bieo, F=UF,Feco

Theorem 2.1. 0(M) = M with any outer measure. Moreover, the outer measure restricted
to this c—algebra is countable additivity.

Proof. First of all, proof that M is a o—algebra:

1. @, is measurable because m*(X) > m*(X N @) + m*(X N Q) The former one is a
zero set, the latter one is a subset of X.
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2. If F is measurable, m*(X) = m*(X N E) +m*(X N E°) for any X C €. Obviously, £E¢
is measurable because (E€)¢ = E.

3. First, prove that M is closed under intersection (thus, closed under union, and differ-
ence as M is closed under complement.) Second, prove M is finite additive if each
E; is disjoint to each other. Third, prove that M is closed under countable union in
disjoint scenario. Finally, prove that M is countably additive and closed countable
under union.

(a)

A, B e M,

mX >m*XNA+m*XNA>m*(XN(ANB))+m* (X N(ANB°))+m*(X N
(AN B))+m*(XN(A°NB)) >m*(XN(ANB)) +m*(XN(AN B)°).

So it is closed under intersection, and inductively, closed under finite intersection,
union, and difference.

If {E;} are finite and disjoint to each other, we have that mE = m(E N E;) +
m(E N EY) =m(E;) +m(U,E;). Inductively, we have {E;} be additive.
Suppose {E;} are disjointed to each other, so would {E; N X} be. For any n,
we have Ul | E; measurable and (U, E;)¢ D E° So m*X = m*(X N (U E;)) +
m*(X N (UL E)) > >0, m*(X N E;) +m*(X N E°). Since the Y, m*(X N
E;) + m*(X N E°) increases as n — 00, we know from monotone convergence
theorem, its limit is smaller than m*X. Then, with the subadditivity property of
outer measure, we have the equation:

m*X = im*(X NE;)+m*(XNE) (1)

Replace X as E in , we have the countably additivity. For any countable union
of {E;}, we may take {E!} as E! = E;/ U._! E}. So we have E = UE; = UE! with
{E!} disjoints to each other. So we may use to prove that E is measurable.

]

Theorem 2.2 (Measure Continuity Theorem). Suppose {E;}, {F;} are sequence of measur-
able set.

1. If E; t E , m*(E;) = m*(E).

2. If F, | F, and m(Fy) < oo, m*(F;) - m*(F)

3 Meseomorphism

Definition. Measure Space: a triple (2, F,pu) is a measure space if  is a set, F is the
o—algebra of some subsets of €2, and p is a measure.

Note that don’t confuse with measurable space (€2, F) which does not require a measure.

Now suppose we have two measure space (€, F, u), (U, F', i).
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Definition. For a T : 0 — €V, it is:
1. Mesemorphism, if X € F, TX € F'.
2. Meseomorphism, if T is a bijection of mesemorphism.
3. Mesisometry: if p/(TX) = u(X).

Theorem 3.1. Suppose T is a bijection with p/*(TX) < tp*(X) and p*(T7'X') < t71p/*(X).
It is a mesomorphism.

Proof. First, prove the inequality is actually equation. Second, use an arbitrary test set to
prove the mesomorphism property.

L p*(X) = p"(THT(X))) <t 'w*(T(X)) <t 'tp*(x) = p(X) So the equation holds.

2. For an arbitrary test set X C Q, TX = X' C V. Also, from the fact that 7" is bijection,
T(ANB)=TANTB.

WH(X7) = p(TX) =t (X)) = (X 0V E) + p(X 1 ES)) = ¢t (" (T(X 1 E)) +
W(T(XNES))) =" (X'NTE)+ p*(X'NTE"). So TE is also measurable.

]

4 Regularity

Here the mesaure theory focus on R™. Now we let the Lebesgue measure as m.
Theorem 4.1. All open sets are Lebesgue measurable.
Proof. Form we have that all open sets is in o({half space}). The result follows. [

Lemma 4.1.1. All half spaces H = (a,00) x R""! in R™ are measurable.

Proof. Set the test set X € R™ and a open half space (a,00) x R"~1. We can find a countable
cube covering {R;} that covers X with > |R;| < m*(X) +e.

For each R;, cut it into R} := R; N H and R; := R; N H°. We have U|R| D X N H
and U|R]| D X N H. Consequently, m*(X N H) € UR; and m*(X N H¢) € UR; Moreover,
YR+ IR =30 (Rl

Consequently, m*X < m* (X NH)+m* (X NH) <> R +|R; | =Y |Ri| <m*X +e.

Since the € is arbitrary, we have the measuribility of H. m

Definition. F, and Gy set:
1. F); is the collection of countable union closed set.
2. (s is the collection of countable intersection of open set.

Theorem 4.2. The regular property of Lebesgue measure:
A set E is measurable if and only exist F € F,,G € Gs such that FF C S C G and
m(G/F) = 0.



Proof. For the necessary direction, we have F = GU E\ G. m*(E \ G) = 0 implies that
E\ G is a measurable set. So E is measurable.

For the sufficient direction, with the [4.2.1, we know the result hold if E is bounded.

If £ is unbounded, let E; = (R; \ R;—1) N E with R; the cube of side length 2i, centred
at 0.

Pick the open covering U} that covers the E; and m(U}) < m(E;) + —>. From the
fact that U2, U \ E C U2 (U \ E;) We know m(U2,U! \ E) < m(U2,(U! \ E;)) <
iy m(Uy) —m(E) < 5

For each Ej, take out the G set V;, because m(E;) = m(V;) we have m(U2, U \UX,V;) <
Sy m(U) —m(V;) < &

So let U,, = U2, U, NU,, = U, we have m(U \ V) = 0. Obvious, U is F, set and V is G
setand U D ED V. O

Lemma 4.2.1. Regularity sandwich:
A bounded set E' is measurable if and only if it has a regular sandwich F' € F,, G € G,
such that F' C E C G and m(G) = m(F).

Proof. For the sufficient direction, take a rectangle R contains E and let £ = R\ E. We
have mR = mE + mE°. So we have some open set U,, V, s.t. U, | UV, | V with
YU, D E,V, D E°, and mU,, - mE, mV,, — mE*.

With this we already have NU,, = U,NV,, = V and they are F, sets and mU = mFE.
Then take V/ = VN R, UV = RN (UV,,)* = m(R UV,) =m(R) —m(E°) = m(FE), we have
V! € E, closed, and UV} is a G set that m(UV)) = m(E).

Consequently, the result follows.

For the necessary direction, Because F' O E D G, we have m*(E\ G) < m*(F'\ G) =0,
so E'\ G is a measurable set. From the fact that G is measurable set, the result follows.

O

Corollary 4.2.1. Lipeomorphism (Lipschitz continuous, and bijection) is a mesomorphism

Proof. By definiton, Lipschitz continuous function map each set E to f(F) with m(f(FE)) <
t(m(FE)). So it maps zero set to zero set. Consequently, the regular sandwich relation for
any G C E C F still holds. O

4.1 Affine motion

Theorem 4.3. An affine motion 7' : R" — R” is a meseomorphism and mutiplies the
measure by |det T'|

Since every linear transformation can be decomposed as O; DO; with O7, Oy orthonormal
(Polar Decomposition), From the lemma [4.3.1] £.3.2] For any measurable set, we can write
it as UB; U Z, and UC; U Zy with Zy, Z5 zero set ,and B; and C' are open disjointed balls and
cubs.

01, O2 maps each B; to another B, with the radius the same and still disjointed to each
other.

D maps each C; to size of |det T'|C;, and still disjointed to each other.

Moreover, D,0; maps zero set to zero set as they are Lipschitz. Consequently, T" is a
meseomorphism and maps m(T(E)) = |det T'|m(E).
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Lemma 4.3.1. Every open set in R" is a countable union of disjoint open cubes plus a zero
set.

Lemma 4.3.2. Every open set in R" is a countable union of disjoint open balls plus a zero
set.

Proof. This is not the point of the chapter, so neglect it now. O

4.2 Hull, Kernel, Inner Measure

Definition. Hull and Kernel, (Measure theoretic) Boundary of a set E:
1. Hull: The smallest G5 set that contains E
2. Kernel: The biggest F, set contained in FE
3. (Measure theoretic) Boundary: Hg \ Kg
Definition. Inner measure m,: which is measure of the kernel of a given set.

Theorem 4.4. Measurability of a set in a box: A C B C R" with B a box, we have
m*B =m*A+m*(B\ A) if and only if A is measurable.

Proof. The necessary direction simply follows from the Caratheodory definition.

For any K C A is closed, We have B \ K is open and contains B \ A. Also, mB =
mK +m(B\ K). Then, take K — K4, we have mB = m,A+m*(B\ A).

From the conditions, we have m,A = m*A, so A is measurable. n

5 Products and Slices

Here, we merely consider in R" space.

Theorem 5.1. Measurable Product Theorem:
If Ae R" B e R™ are Lebesgue measurable, Then, m(A x B) = m(A)m(B). Let 0- 00 =0
for convenience.

Proof. From [5.1.3] and the o—property of measurablility, we have every F,, Gs set, m(A x
B) =m(A) x m(B).

Then, if A, B measurable, take Fia, G4, Fp, Gp the F,, G5 set with Fy D A D Ga,m(F,) =
m(Ga) and Fg D B D Gg,m(Fg) = m(Gg). Obviously, Fly x Fg is still a F, and G4 x Gp
is still a Gj.

Consequently, Fiyx Fg D AXB D GaxGpand m(Fax Fg) = m(AxB) = m(GaxGp) =
m(A)m(B) O

Lemma 5.1.1. For product of cubes: m(A x B) = m(A)m(B)

U

Proof. This has been deduced previously.

Lemma 5.1.2. For product with a zero set: m(A x Z) =0
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Proof. We may use ¢ method to covers Z with countable union of cubes UC' with total
measure smaller than e. Use a big cube R to cover A if A is bounded. So we have A x Z <
R xUuC =0.

For A unbounded case, we may use R; to approach A. The result follows. n

Lemma 5.1.3. For product of open sets: m(A x B) = m(A)m(B)

Proof. Because Each open set can be written as countable disjointed union of cubes plus a
zero set, and multiply of zero set with any set is still measure zero.

Pick A =U®,C*U Z,, B=UX,CU Z,.

So m(A x B) = m(U; jenCy x C? + Z) = m(A) x m(B) O

Definition. Slice: for a set £ C R™ x R™, the slice of E on z € R" is
E, ={y e R"|(z,y) € E}

Theorem 5.2. Quasi-Chebyshev theorem:
Suppose W € I"™™ is open, a > 0. Take X, := {z € R"|m(W,) > a}. Then,

m(W) > a m(X,)

Proof. The openess of W gave us that every slice of W is open. Pick x € X,, we have
a compact set K, with m(K,) > a. We may find a open set around z = U(z) with
2 € U(z),Wp D K, from the fact that W is open. This gave us that X, is a open set in
R™, thus it can be written as U2, I; with each I; an open cube and in each I;, contain an K;
such that Vx € I;, W, D K; with m(K;) > a.

For each compact set K in X, we may reduce the X, (which covers K) to U, I;,, which
can be cut into finite many disjoint open cubes with a zero set.

Thus, we have

m(W) > m(Uglzljji X sz‘) = Zm(jjz) m<sz) > @Zm(Ijz) > O‘m(K)

So take K — X,, we has the equality still holds and by m.(X,) = m(X,), the result
follows. O

Theorem 5.3. Zero Slice Theorem:
E is a zero set if and only if almost every slice of F is a zero set.

Proof. The sufficient direction can be approached by simply. As non measure zero slice
is Uo? ;. X1, since each X1 is measure zero, so is its union.

For the necessary direction, we may proof the E, = 0 Vz € R”, and E C I™ case first.

Take a compact set K € E, and the slice of x on K, can be cover by a open set V' with
m(V) < e. By the compactness of K, we know there is a open ball U around z such that
Vo' e U, Ky € V.

Consequently, we can covers K by UgernU(z) x V(x), and we can pick those finite
U(xz) x V(x) that covers K.

Then, we can construct U’(z) the disjoint set from U(z), so m(UU'(z) x V(z)) < 1-e.

With € method, generalise this to unbounded set. Also, it is trivial to prove zero set with
slice on them is non-zero. O



6 Lebesgue Integral

We first take f : R™ — R*. For simplicity, we may use n = 1 in most of the time.

Definition. Undergraph and Completed graph of f:

1. Undergraph of f:
U(f) ={(z,y) e R™0 <y < f(2)}

2. Completed of f:

~

U(f) ={(z,y) R0 <y < f(a)}

Definition. (Lebesgue) Measurable Function f: f is a measurable function if and only if
Uf is measurable in R*1,
Also, we say f is Lebesgue integrable if U f < oo and write Uf = [ f.

Here we do not the dr in Riemann sense because we want to emphasis that it is the
Lebesgue measure of undergraph.
When we say f,, —q. f, it means that almost every point in Domain of f,, converge to

f.

Theorem 6.1. Monotone Convergence Theorem: If f, T,. f and every f, is measurable,
We have f measurable, and [ f, — [ f.

Proof. This is simply an application of measure continuity theorem. m
Definition. Lower and Upper envelope sequence: For f,, be a sequence of functions.
1. Lower envelop f, := infy>, fi

2. Upper envelop f, := SUPg>p fh

Obviously, f,, is decreasing and fn 1s increasing as n — oo.
With this we have

[ o= mi uth)and [t f, = m(e, G U)

And
[ o= mie uth)and [t g, =m0, U)

Theorem 6.2. Fatou’s Lemma:

/ liminf f,, < liminf [ f,
n—oo n—oo
Proof. Because f,, is increasing, with MCT, we know [ lim, o fr = lim, o0 [ fn and f,, T f
to some measurable f.

For each f,, we have f, > f, Yk > n, so inf, o [ fn > [ fu, the inequality still holds
when we take limit. O



Corollary 6.2.1 (Reverse Fatou). Suppose f, < g and g is integrable. We have limsup [ f,, <

[ lim sup f,.
This can be simply deduced as Fatou.

Theorem 6.3. (Lebesgue) Dominant Convergence Theorem:
If f, — f pointwisely, and each f,, is bounded by an integrable function g, [ f, = [ f

Proof. The convergence of f,, gave us that liminf f,, = limsup f,, so [liminf f, = [limsup f,
From Fatou’s lemma and reverse Fatou, we know

/liminf fn < liminf/fn < limsup/fn < /limsup I

The boundeness of f, guarantees the last inequality holds, and the [liminf f,, = [limsup f,
let us know equation holds everywhere. O]

Definition. f-translation Ty: T¢(x,y) = (z,y + f(z)).
Theorem 6.4. If f is integrable T} is a mesiometry.

Proof. When f is an step function, it would be trivial. Also, we have U f U Tr(Ug) =
U(f+9) =T,US)+Ug.

Then for each cube K™*! we can construct an g = xn, than, mUf) +m(Tp(K™t)) =
n(TyUf) +m(E").

So m(K" ™) = m(T;(K™™)). Since every measurable set can be sandwich by G5 and
F,, the result follows. O

7 Italian Measure Theory

Although in Lebesgue Integral, we do not write dx as the differential term, we may still write
[ fdz to indicate the integration variable.

Proposition 7.1. Cavalieri’s Principle: Suppose the £ € R™™ is measurable, x € R", E,
is measurable a.e., and the function z — m(E,) is also measurable. Moreover,

B)= [m(E)a

Proof. This holds true when E is zero set or cube, so it holds true of any open set.
Consequently, it still hold true for every bounded set, with e-method, this can be gener-
alised to every measurable set. O

Theorem 7.1. Preimage definition of measurable function is equivalent to Undergraph
definition of measurable function.

Proof. From Preimage definition to Undergraph definition can be deduced by characteristic
function and monotone.

From Undergraph to Preimage: From Cavalieri’s Principle, (U f), is measurable almost
everywhere, and it is obvious that (Uf), = {z|f(z) > y}. Obviously, (Uf), D Uf), if
y <y So we may choose an y; | y with (U f),, measurable. By measure continuity theorem,
the result follows. O



Theorem 7.2. Fubini’s theorem: f(z,y) — R is measurable,then

[ [ ttwivds = [ [ 1oty = [ 1

Proof. This is trivial from Cavalieri’s Principle. O

8 Vitali Coverings and Density Points

Definition. Vitali Covering;:
For a set S and V a covering of S, if Ve > 0,p € S, IV € Vs.t. p € V,diam(V) < e.
diam(.) is the diameter of a given set.

Theorem 8.1. Vitali’'s Covering Theorem:
If V is a closed ball Vitali Covering of set S, exist a countable subcollection of V, says

1. V;,V; disjoint to each other.

2. Y 2, m(V;) <m*(S) + ¢
3. m*(S\U)=0
We call this U covers S efficiently (almost every S).

Proof. Firstly assume S is bounded. Covers S with a open set W with m(S) < m*(S) + e,
retake V = W NV, with V), the original Vitali covering. We have supy .y, diam(V') < oo now.
Then, construct a sequence of U similar to [8.1.1] it is the desired efficient covering.

It must satisfy (1),(2) for sure. Take U, = U ,B;, it is closed , obviously. So we have
{BeV,BNU, =@} still a Vitali covering that covers S \ U,. Moreover, We have UXB; a
collection of U2 5B; D{B € V,BNU, =@} D> S. So UL 5m(B;) >m*(A\U,).

With U;?inf)m(B ) — 0, (3) holds spontaneously.

For the unbounded case, approaching it from bounded subspace, the results follows. [

Lemma 8.1.1. Vitali’'s Covering Lemma:

In a separable metric space, for any collection of closed balls F' = {B;|i € J} with
sup{diam(B;)|i € J} < oo, we can find a countable disjointed collection of balls U, B;,
with

Ui215B;, D UiesB;.
5B means B still centred in the same place, only the diameter expends five times.

Proof. Firstly, suppose F' is bounded.
Set Ry = suppcy diam(B), pick B;, with dz’am(le) > 1Ry
Iteratively, let H; = {B|B € H; 4, BﬂUZ B;, = @}, Bj, with diam(B;,) > i supgey, | diam(B).
Collect each Bj, and construct U = Ufille, 1f BNU # @ we have B C 5U simply from
triangular inequality.
Because F' is bounded, we have diam(B;,) — 0. Thus, for each B € Fdiam(B) > 0, it
must fall out from some H,,.
Bounded cased is proved.
Fro the unbounded case, We can approach the unbounded F' by countable increasing
closed set. The result follows. O
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8.1 Density Point

Definition. Density:
We say the concentration of measurable set E in @ is

m(ENQ)
m(Q)

Or [E : Q] for simplicity
So we say the density of E in p, a point in F is

lim [E : Q]

Q—p

Or 6(E, p) for simplicity, and 4,9 as limit inf and limit sup.
If ) = 1 we say the point is a density point.

Theorem 8.2. Lebesgue Density Theorem:
If £ is measurable, §(p, E) = 1 for almost every p € E.

Proof. Fix an 1 > a > 0. Define X, = {z|z € F,d(x, E) < a}. It means for every p € X,,
we can find a closed cube @ such that z € Q, |Q| < ¢, and [E : Q] < a. Collect all these Q.
Obviously, it is a Vitali Covering.

By VCT, we may have an Uy(@); that covers X, efficiently, then we have

m*(Xa) < Zm(Qz) +e€
= Zm(Qz NX,)+e
<ad m(Q) < a(m*(X,) +¢)

Since € and a are arbitrary, the result follows. n

9 Lebesgue Calculus

Definition. Average and density of a function:
Average of f on a measurable set A is

1
fr=mop [ =124

Density of f on a point p is
d(p, f) =lim[f : Q]
Qlp

Theorem 9.1. Average Value Theorem:
Take a locally integrable function f,

f(p)=4(p, f)

almost every p in domain.
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Proof. WOLG, We may refrain f on an interval X and assume f > 0. Given a > 0,
I, = [ka, (k+ 1)a), I.* = f,'. Suppose f(p) € Iy, Write

1
%Sf:m%m“/]gw“ oo’

with A = U 7Y B=1." C = U

With [A: Q] — 0 and [B: Q] — 1, and f is bounded in A, B, we have [A: Q|(fanq f) +
(B : Ql(fpBug f) bounded in [ka, (k + 1)a] when m(Q) — 0.

For the third term, truncate f with f, = min(f,n), and g, = f — f,. Because f is
integrable, we know [ g, — 0. Pick

X (e, gn) = {z[0(2, 9.) > o}

It is easily to see that m(X(a, g,)) — 0 from [9.1.1} So X(a, g,)® = X a.e.
That is, for almost every p, we may find an n s.t. d(p, g,) < a.

So the third term is
1 F 1
—= nT —~ dn
me cnQ me cnQ

The first one tends to 0 as [C': Q] — 0, the second one is smaller than a.
Combine all of three terms, we have [f : Q] € [ka, (k + 2)a] for almost every p. With
a — 0, the result follows. O

Lemma 9.1.1. Chevyshev’s Density inequality:
Define X, y = {z : §(x, f) > a},
o mXu) < [ 1

Proof. For each x € X, , we have a small ) covers z and [f : @] > a. Collect these
Q, its a Vitali covering. We may find a efficient covering V' = UnQ); covers X, s with

a<[f:Q] = a-m(Q)< [, f

So
0w (Xu) <Y am@) <Y [ r< [
N i
The result follows. O
Corollary 9.1.1. Assume a [ : [a,b] — R is integrable. Take F(z) = [ f(x), we have

F'(z) = f(x) ae.

Proof. From the Average Value Theorem, we have () is actually an interval, so

lim Flz+h) - = lim %S f(t)

h—0 h h—0

Same for [z — h, h. O
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Definition. Absolutely Continuous: For every € > 0, exist an § > 0s.t. If Y"1, |[a;, b]| < 4,
Yoy | f(a;i —b;)| <€, and [a;, b;] disjoints to each other.
Measure Continuous: If Z is a zero set, m(f(Z)) = 0.

Theorem 9.2. Lebesgue’s Fundamental Theorem:
Take f : [a,b] — R integrable, and F(z) = [ f(t)dt, then:

1. F is absolutely continuous.
2. F"'= f ae.
3. If G absolutely continuous, and G' = f, G — F = c.
Proof. Assume f >0 WLOG.
1. If f is bounded in M, it is obvious that > m(F'(I;)) < > Mm(Iy). For any epsilon >

0, we may pick 6 = 17, so F' is absolutely continuous.

If not, we can chop f into f, = fXf@<n and g, = f — f,. It is obvious that f, — f
and [ g, — 0.

For each ¢, pick n such that [ g, < €/2.

We may find a ¢ for the f,, function that satisfies the absolutely continuous condition
on €/2. Then, for the disjointed intervals I} with sum less than e,

me(li)):Z/hfﬁgnsz/hm/gnge

2. This is Corollary

3. Take H = G — F, so H is still absolutely continuous and H' =, .. 0.

Pick a fixed 2’ € [a,b], and define X = {z € [a,2]|H'(x) = 0}. Fix a ¢ > 0. For every
r € X, we have
H(X +h)— H(x) €

<
h ~ 2(b—a)
with small A (obviously = € [,z + h]). This forms a Vitali covering. We may find an
UI; that covers X efficiently. and some N that SN | |I;| > (2/ — a — r) with r > 0

With the same €, we may find a ¢ satisfy the absolutely continuous condition of H in
€/2. Pick r = 4, and J is the collection of [a,z'] — I, obvious, is still a finite collection
of interval. We have

(X+h)—H(x) €
z <3

Boa) and the latter comes from absolutely

The former comes from the Z
continuous property.

O
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10 Lebesgue’s Last Theorem

Theorem 10.1. A monotone function f in [a, b] is differentiable almost everywhere.

Proof. Take D}, f(z) as the limsup,,_,, w, and similar for 4+, —, and M, m.

Define Ess = {z|D,, f(z) < s < S < Dj, f(x)} with some s < S.
Since for every x € Eyg it is contained in some small [z — h, h] such that w <

s. We may has an efficient covering L = Uyla;, b;]that covers Eyg with [a)=/®) ) IO~ ¢ for

—b
each interval. Similar for the R which is another efficient covering that “) f ® > S, and
moreover, R; € L; for some j. Thus, with Lemma [10.1.1}

m*(Ess) ZZ!RI<Z—\L!<—W( s) +e

i RjeL;

. So FE,g is zero set for any s,S. Change +, — and M, m in the same way. We proved that
derivative existed a.e.

In addition, we may prove the f'(z) is finite a.e. Define g, (z) = n(f(z+ ) — f(2)). gn
is measurable and 9n — fla.e.,so fis measurable too.

Then, f = f lim 1nfn_>Oo Jn < liminf f Gns

We have f On = fbﬂ/nf —nfaﬂ/nf(t ke f = f(b) if x > b.) The first one is f(b),

and the second one is bigger than f(a). Combine we have f; gn < f(b) — f(a). The result
follows. O

Lemma 10.1.1. Chebyshev’s Lemma:
If f is monotonely increasing on [a, b], b) 0N — g take I = {[/,¥] C [a, b]|% >

S}, S > s and each interval in [ is d1SJ01nted. "Then we have

1< 50~ a)

Proof. Because f is nondecreasing, s(b —a) = (f(b) — f(a)) > Z[a;wb;c]el f(,) — flay,) >
Z[aﬁc,b;c]el S(b, — aj,)- 0
Corollary 10.1.1. Lipschitz function is differentiable a.e.

Definition. Bounded Variation of a function f on S:
For every partition P of S: ), Af < C with C is a constant. We say P is of B.V.

Theorem 10.2. An absolutely continuous function on [a, b] is of B.V.

Proof. We may find an § > 0 such that Y .°, |b; —a;| <0 = Y2, |f(b;) — f(ai)| < L.
We may dissect [a,b] = UM [a+kd,a+ (k+1)d]. So in each interval, the B.V. is smaller
than 1, the total B.V, as a result, smaller than M. O

Corollary 10.2.1. An function f of B.V is differentiable a.e.

Proof. We may write f as subtraction of two increasing function. (How?) Because increasing
function is differentiable a.e., so is their subtraction. O

Theorem 10.3. Lebesgue’s main theorem:
Lebesgue’s fundamental theorem is the if and only if relation.

14



11 Additional Topics

Here we talk about some other things [ am lazy to categorise.

11.1 Littlewood’s Three Principles

Littlewood introduced the concept of "nearly”. which meas except an € set with € > 0.

Theorem 11.1. Littlewood’s First Theorem:
For every measurable set, it contains an compact set that is nearly the set.

Which is the regularity of measurable set.

Theorem 11.2. Littlewood’s Second Theorem:
Every measurable function is nearly continuous.

Proof. The codomain of the function f can be covered by rational endpoints I; = (g;, q),
which is countable and take E; = {f € I;}, which is sandwiched by some closed and open
sets K; C E; C U; with m(U; \ K;) < ¢/2'. Take S; = U; \ K;, so m(US;) < € and define
T = (US;)°.

Suppose Va € T, x, — = € T, fixed an 0 > 0. We must have some |I;| < ¢ and
f(xz) € I;, and obviously, x € E; C U;. From the openess of U; we know for some K,
x, € Uj it k > K. Moreover, because xj; not in S;, it must be in K;, too. z; € E; as well.
Consequently, f(zx) € Ej, and |f(zx) — f(x)] < 0. O

Theorem 11.3. Littlewood’s Third Theorem:
Almost everywhere convergence (of measurable function on a compact interval [a,b])
implies nearly convergence.

Proof. f, — f a.e. imply for every [, define Xy, = {z||fx > f] > %}, Xk1 —ae. a,b]. as
k — oo

Fix an € > 0, we can construct a sequence Xy, with m(X,g(l)yl) < 5. Take [ € N, we
have m(UX} ;) <€ so (UXE ) = NXyq), differ from [a, b] with only an € set.

In the NXyq),, for any given o > 0, we may find an 1/l < o, so for all x € X,

| ful@) = f2)] <1/l < 0.
Because Xj); O Xk, the result follows. 0

11.2 LP spaces

Definition. L? norm of a function f is ([ |f|?)7 = ||f||,-
If p = oo, we have || f|| = inf || f] < c a.e.

Theorem 11.4. Holder’s inequality:
1fglls < I £lpllgllg with  + 2 =1
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Proof. Young’s Inequality: ab < %p% with % + % =1
Take a = |f|/([|f1[,)"/, b= |gl/(llg]l,)"/*, so

1 1
/abg—/ap—l——/qul
p q

Replace a, b with original form, the result follows. n
Because I use ITEX, I am too lazy to use the o with two dots.

Theorem 11.5. Minkowski’s Inequality:

L+ glly < [1£11p + gl
with p > 1.

Proof.

||f+g||§3=/|f+g|pS/|f||f+g|p‘1+/Ig||f+g|p‘1

< (U1l + ol [ 1f + 91%75)'" (with Holder

< (f1lp + Ngllp)(ULf +allp™)
Cancel two side and get the answer. O]
Theorem 11.6. For f,, — f in LP, there’s a subsequence such that f,, —4.. f

Proof. Converge in LP implies converge in measure by Chebyshev’s inequality.
Take E, = {z||f, — f| > €.}, we can find a ¢, — 0 and subsequence s.t. m(Enp)) < 57
With the Boreal-Cantalli Lemma ([11.6.1)), we know m(limsup F,) = 0. This is equivalent
to fn —ae f- O]

Lemma 11.6.1. Boreal-Cantalli Lemma: If Y m(E;) < oo, m(limsup E;) = 0.

Proof. Tt is easy because limsup F; = U2, E;, so m(limsup E;) < Z;’; E;. The latter
converge to zero. ]
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