
Ch6: Lebesgue Measure Theory
from Real Mathematical Analysis

Colin Cleveland

June 23, 2019

1 Outer measure

Definition. Lebesgue Outer Measure:
In R1, define measure of a interval I := (a, b); |I| = b−a and for a set S ∈ 2R, outer measure

m∗(S) = inf{
∞∑
i=1

|Ii| s.t. ∪∞i=1 Ii ⊃ S}

Analogously, In Rn, hyper-rectangle R := (a1, b1)× ...(an, bn) and |R| = (b1−a1)× ...× (bn−
an).and for a set S ∈ 2Rn

, outer measure

m∗(S) = inf{
∞∑
i=1

|Ri| s.t. ∪∞i=1 Ri ⊃ S}

We have the following properties for outer measure:

Theorem 1.1. Propertied of Lebesgue Outer measure:

• m∗(∅) = 0

• m∗(A) < m∗(B) if A ⊂ B

• A = ∪Ai, m∗(A) ≤
∑
Ai

Definition. Zero set: A set S ∈ Ω, if its outer measure is zero, we call it a zero set.

Proposition 1.1. Countable union of zero set is still measured zero

Proof. Given the permutation of set, and for any number ε > 0. Cover i− th set with ε/2i+1.
Then the outer measur of the set union is smaller than ε.

Theorem 1.2. Bounded Closed box is still the same size as its open counter part in Rn.
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Proof. When n = 1, and B = [a, b] m∗(B) ≤ b − a from ε−principle. For the reverse
inequality, since B is compact, for all open interval covering, we have a finite subcovering
for B. Suppose the subcovering is {I1, ..., IN}. If N = 1, |I1| > (b− a) trivially.

Suppose we know the length sum of a covering by N intervals is bigger than (b− a) for
any bounded closed interval, then for a N +1 covering of B, suppose the interval that covers
a is I1 : (a1, b1). If b1 > b,

∑N+1
i=1 |Ii| ≥ (b− a) trivially.

Other wise, we have that B/(a1, b1) = [c, b] is covered by N interval thus
∑N

i=1 |Ii+1| ≥
(b− c)and |I1| > (a− c), so the sum of length is still greater or equal to b− a. By induction,
the result follows.

When n > 1, m∗(B) ≤
∏n

i=1(bi − ai) = |B| from ε−principle. For the reverse inequality,
with Lebesuge number lemma, we have a λ s.t. every cube with diameter smaller then λ
will fall in a open cube.

Suppose an arbitrary open cubes covering C induce a Lebesgue number λ We may par-
tition on B s.t. every small cube with diameter smaller then λ. Say each small cube is si,
then we have

∑
|si| = |B| and

∑
si⊂Ci

|si| ≤ |Ci|. We have that

|B| ≤
∑
i

∑
sk∈Ci

|si| ≤
∑
i

|Ci|

.

2 Measurablility

Definition. Abstract Outer Measure:
Any measure that satisfy Properties of Theorem 1.1 is a Abstract Outer Measure

Definition. Measurable set (Caratheodory’s criterion): for any subset A of Ω, m∗A =
m∗A ∩ E + m∗A ∩ Ec. Then E is measurable. We call the collection of measurable set (of
Ω) M

Example. Non-measurable set:

Definition. σ−Algebra σ:

1. ∅,Ω ∈ σ

2. A ∈ σ, Ac ∈ σ

3. Ei ∈ σ,E = ∪Ei, E ∈ σ

Theorem 2.1. σ(M) =M with any outer measure. Moreover, the outer measure restricted
to this σ−algebra is countable additivity.

Proof. First of all, proof that M is a σ−algebra:

1. ∅,Ω is measurable because m∗(X) ≥ m∗(X ∩ ∅) + m∗(X ∩ Ω) The former one is a
zero set, the latter one is a subset of X.
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2. If E is measurable, m∗(X) = m∗(X ∩E) +m∗(X ∩Ec) for any X ⊂ Ω. Obviously, Ec

is measurable because (Ec)c = E.

3. First, prove that M is closed under intersection (thus, closed under union, and differ-
ence as M is closed under complement.) Second, prove M is finite additive if each
Ei is disjoint to each other. Third, prove that M is closed under countable union in
disjoint scenario. Finally, prove that M is countably additive and closed countable
under union.

(a) A,B ∈M,
m∗X ≥ m∗X ∩A+m∗X ∩Ac ≥ m∗(X ∩ (A∩B)) +m∗(X ∩ (A∩Bc)) +m∗(X ∩
(Ac ∩B)) +m∗(X ∩ (Ac ∩Bc)) ≥ m∗(X ∩ (A ∩B)) +m∗(X ∩ (A ∩B)c).
So it is closed under intersection, and inductively, closed under finite intersection,
union, and difference.

(b) If {Ei} are finite and disjoint to each other, we have that mE = m(E ∩ E1) +
m(E ∩ Ec

1) = m(E1) +m(∪ni=2Ei). Inductively, we have {Ei} be additive.

(c) Suppose {Ei} are disjointed to each other, so would {Ei ∩ X} be. For any n,
we have ∪ni=1Ei measurable and (∪ni=1Ei)

c ⊃ Ec So m∗X = m∗(X ∩ (∪ni=1Ei)) +
m∗(X ∩ (∪ni=1Ei)

c) ≥
∑n

i=1m
∗(X ∩ Ei) + m∗(X ∩ Ec). Since the

∑n
i=1m

∗(X ∩
Ei) + m∗(X ∩ Ec) increases as n → ∞, we know from monotone convergence
theorem, its limit is smaller than m∗X. Then, with the subadditivity property of
outer measure, we have the equation:

m∗X =
∞∑
i=1

m∗(X ∩ Ei) +m∗(X ∩ Ec) (1)

(d) Replace X as E in (1), we have the countably additivity. For any countable union
of {Ei}, we may take {E ′i} as E ′i = Ei/∪i−1k=1Ek. So we have E = ∪Ei = ∪E ′i with
{E ′i} disjoints to each other. So we may use (1) to prove that E is measurable.

Theorem 2.2 (Measure Continuity Theorem). Suppose {Ei}, {Fi} are sequence of measur-
able set.

1. If Ei ↑ E , m∗(Ei)→ m∗(E).

2. If Fi ↓ F , and m(F1) <∞, m∗(Fi)→ m∗(F )

3 Meseomorphism

Definition. Measure Space: a triple (Ω,F , µ) is a measure space if Ω is a set, F is the
σ−algebra of some subsets of Ω, and µ is a measure.

Note that don’t confuse with measurable space (Ω,F) which does not require a measure.

Now suppose we have two measure space (Ω,F , µ), (Ω′,F ′, µ′).
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Definition. For a T : Ω→ Ω′, it is:

1. Mesemorphism, if X ∈ F , TX ∈ F ′.

2. Meseomorphism, if T is a bijection of mesemorphism.

3. Mesisometry: if µ′(TX) = µ(X).

Theorem 3.1. Suppose T is a bijection with µ′∗(TX) ≤ tµ∗(X) and µ∗(T−1X ′) ≤ t−1µ′∗(X ′).
It is a mesomorphism.

Proof. First, prove the inequality is actually equation. Second, use an arbitrary test set to
prove the mesomorphism property.

1. µ∗(X) = µ∗(T−1(T (X))) ≤ t−1µ′∗(T (X)) ≤ t−1tµ∗(x) = µ(X) So the equation holds.

2. For an arbitrary test set X ⊂ Ω, TX = X ′ ⊂ Ω′. Also, from the fact that T is bijection,
T (A ∩B) = TA ∩ TB.

µ′∗(X ′) = µ′∗(TX) = t(µ∗(X)) = t(µ∗(X ∩ E) + µ(X ∩ Ec)) = t(t−1(µ′∗(T (X ∩ E)) +
µ′∗(T (X ∩ Ec))) = µ′∗(X ′ ∩ TE) + µ′∗(X ′ ∩ TEc). So TE is also measurable.

4 Regularity

Here the mesaure theory focus on Rn. Now we let the Lebesgue measure as m.

Theorem 4.1. All open sets are Lebesgue measurable.

Proof. Form 4.1.1,we have that all open sets is in σ({half space}). The result follows.

Lemma 4.1.1. All half spaces H = (a,∞)× Rn−1 in Rn are measurable.

Proof. Set the test set X ∈ Rn and a open half space (a,∞)×Rn−1. We can find a countable
cube covering {Ri} that covers X with

∑
|Ri| < m∗(X) + ε.

For each Ri, cut it into R+
i := Ri ∩ H and R−i := Ri ∩ Hc. We have ∪|R+

i | ⊃ X ∩ H
and ∪|R+

i | ⊃ X ∩H. Consequently, m∗(X ∩H) ∈ ∪R+
i and m∗(X ∩Hc) ∈ ∪R−i Moreover,∑

|R+
i |+ |R−i | =

∑
|Ri|.

Consequently, m∗X ≤ m∗(X ∩H) +m∗(X ∩Hc) ≤
∑
|R+

i |+ |R−i | =
∑
|Ri| ≤ m∗X + ε.

Since the ε is arbitrary, we have the measuribility of H.

Definition. Fσ and Gδ set:

1. Fσ is the collection of countable union closed set.

2. Gδ is the collection of countable intersection of open set.

Theorem 4.2. The regular property of Lebesgue measure:
A set E is measurable if and only exist F ∈ Fσ, G ∈ Gδ such that F ⊂ S ⊂ G and

m(G/F ) = 0.
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Proof. For the necessary direction, we have E = G ∪ E \ G. m∗(E \ G) = 0 implies that
E \G is a measurable set. So E is measurable.

For the sufficient direction, with the 4.2.1, we know the result hold if E is bounded.
If E is unbounded, let Ei = (Ri \ Ri−1) ∩ E with Ri the cube of side length 2i, centred

at 0.
Pick the open covering U i

n that covers the Ei and m(U i
n) < m(Ei) + 1

n2i
. From the

fact that ∪∞i=1U
i
n \ E ⊂ ∪∞i=1(U

i
n \ Ei) We know m(∪∞i=1U

i
n \ E) ≤ m(∪∞i=1(U

i
n \ Ei)) ≤∑n

i=1m(U i
n)−m(Ei) ≤ 1

n

For each Ei, take out the Gδ set Vi, because m(Ei) = m(Vi) we have m(∪∞i=1U
i
n\∪∞i=1Vi) ≤∑n

i=1m(U i
n)−m(Vi) ≤ 1

n

So let Un = ∪∞i=1U
i
n,∩Un = U , we have m(U \ V ) = 0. Obvious, U is Fσ set and V is Gδ

set and U ⊃ E ⊃ V .

Lemma 4.2.1. Regularity sandwich:
A bounded set E is measurable if and only if it has a regular sandwich F ∈ Fσ, G ∈ Gδ,

such that F ⊂ E ⊂ G and m(G) = m(F ).

Proof. For the sufficient direction, take a rectangle R contains E and let Ec = R \ E. We
have mR = mE + mEc. So we have some open set Un, Vn s.t. Un ↓ U, Vn ↓ V with
∀Un ⊃ E, Vn ⊃ Ec, and mUn → mE, mVn → mEc.

With this we already have ∩Un = U,∩Vn = V and they are Fσ sets and mU = mE.
Then take V ′i = V c

n ∩R, ∪V ′i = R∩ (∪Vn)c = m(R ∪Vn) = m(R)−m(Ec) = m(E), we have
V ′i ∈ E, closed, and ∪V ′i is a Gδ set that m(∪V ′i ) = m(E).

Consequently, the result follows.
For the necessary direction, Because F ⊃ E ⊃ G, we have m∗(E \G) ≤ m∗(F \G) = 0,

so E \G is a measurable set. From the fact that G is measurable set, the result follows.

Corollary 4.2.1. Lipeomorphism (Lipschitz continuous, and bijection) is a mesomorphism

Proof. By definiton, Lipschitz continuous function map each set E to f(E) with m(f(E)) ≤
t(m(E)). So it maps zero set to zero set. Consequently, the regular sandwich relation for
any G ⊂ E ⊂ F still holds.

4.1 Affine motion

Theorem 4.3. An affine motion T : Rn → Rn is a meseomorphism and mutiplies the
measure by | detT |

Since every linear transformation can be decomposed as O1DO2 with O1, O2 orthonormal
(Polar Decomposition), From the lemma 4.3.1, 4.3.2, For any measurable set, we can write
it as ∪Bi∪Z1 and ∪Ci∪Z2 with Z1, Z2 zero set ,and Bi and C are open disjointed balls and
cubs.

O1, O2 maps each Bi to another B′i with the radius the same and still disjointed to each
other.

D maps each Ci to size of | detT |Ci, and still disjointed to each other.
Moreover, D,Oi maps zero set to zero set as they are Lipschitz. Consequently, T is a

meseomorphism and maps m(T (E)) = | detT |m(E).
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Lemma 4.3.1. Every open set in Rn is a countable union of disjoint open cubes plus a zero
set.

Lemma 4.3.2. Every open set in Rn is a countable union of disjoint open balls plus a zero
set.

Proof. This is not the point of the chapter, so neglect it now.

4.2 Hull, Kernel, Inner Measure

Definition. Hull and Kernel, (Measure theoretic) Boundary of a set E:

1. Hull: The smallest Gδ set that contains E

2. Kernel: The biggest Fσ set contained in E

3. (Measure theoretic) Boundary: HE \KE

Definition. Inner measure m∗: which is measure of the kernel of a given set.

Theorem 4.4. Measurability of a set in a box: A ⊂ B ⊂ Rn with B a box, we have
m∗B = m∗A+m∗(B \ A) if and only if A is measurable.

Proof. The necessary direction simply follows from the Caratheodory definition.
For any K ⊂ A is closed, We have B \ K is open and contains B \ A. Also, mB =

mK +m(B \K). Then, take K → KA, we have mB = m∗A+m∗(B \ A).
From the conditions, we have m∗A = m∗A, so A is measurable.

5 Products and Slices

Here, we merely consider in Rn space.

Theorem 5.1. Measurable Product Theorem:
If A ∈ Rn, B ∈ Rm are Lebesgue measurable, Then, m(A×B) = m(A)m(B). Let 0 · ∞ = 0
for convenience.

Proof. From 5.1.3, and the σ−property of measurablility, we have every Fσ, Gδ set, m(A×
B) = m(A)×m(B).

Then, ifA,B measurable, take FA, GA, FB, GB the Fσ, Gδ set with FA ⊃ A ⊃ GA,m(FA) =
m(GA) and FB ⊃ B ⊃ GB,m(FB) = m(GB). Obviously, FA × FB is still a Fσ and GA ×GB

is still a Gδ.
Consequently, FA×FB ⊃ A×B ⊃ GA×GB andm(FA×FB) = m(A×B) = m(GA×GB) =

m(A)m(B)

Lemma 5.1.1. For product of cubes: m(A×B) = m(A)m(B)

Proof. This has been deduced previously.

Lemma 5.1.2. For product with a zero set: m(A× Z) = 0
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Proof. We may use ε method to covers Z with countable union of cubes ∪C with total
measure smaller than ε. Use a big cube R to cover A if A is bounded. So we have A× Z ≤
R× ∪C = 0.

For A unbounded case, we may use Ri to approach A. The result follows.

Lemma 5.1.3. For product of open sets: m(A×B) = m(A)m(B)

Proof. Because Each open set can be written as countable disjointed union of cubes plus a
zero set, and multiply of zero set with any set is still measure zero.

Pick A = ∪∞i=1C
a
i ∪ Za, B = ∪∞i=1C

b
i ∪ Zb.

So m(A×B) = m(∪i,j∈NCa
i × Cb

j + Z) = m(A)×m(B)

Definition. Slice: for a set E ⊂ Rn ×Rm, the slice of E on x ∈ Rn is

Ex = {y ∈ Rm|(x, y) ∈ E}

Theorem 5.2. Quasi-Chebyshev theorem:
Suppose W ∈ In+m is open, α > 0. Take Xα := {x ∈ Rn|m(Wx) > α}. Then,

m(W ) ≥ α m(Xα)

Proof. The openess of W gave us that every slice of W is open. Pick x ∈ Xα, we have
a compact set Kx with m(Kx) > α. We may find a open set around x = U(x) with
x′ ∈ U(x),Wx′ ⊃ Kx from the fact that W is open. This gave us that Xα is a open set in
Rn, thus it can be written as ∪∞i=1Ii with each Ii an open cube and in each Ii, contain an Ki

such that ∀x ∈ Ii,Wx ⊃ Ki with m(Ki) > α.
For each compact set K in Xα, we may reduce the Xα (which covers K) to ∪ni=1Iji , which

can be cut into finite many disjoint open cubes with a zero set.
Thus, we have

m(W ) > m(∪ni=1Iji ×Kji) =
n∑
i=1

m(Iji) m(Kji) > α
n∑
i=1

m(Iji) > αm(K)

So take K → Xα, we has the equality still holds and by m∗(Xα) = m(Xα), the result
follows.

Theorem 5.3. Zero Slice Theorem:
E is a zero set if and only if almost every slice of E is a zero set.

Proof. The sufficient direction can be approached by 5.2 simply. As non measure zero slice
is ∪∞n=1X 1

n
, since each X 1

n
is measure zero, so is its union.

For the necessary direction, we may proof the Ex = 0 ∀x ∈ Rn, and E ⊂ In case first.
Take a compact set K ∈ E, and the slice of x on Kx can be cover by a open set V with

m(V ) ≤ ε. By the compactness of K, we know there is a open ball U around x such that
∀x′ ∈ U , Kx′ ∈ V .

Consequently, we can covers K by ∪x∈RnU(x) × V (x), and we can pick those finite
U(x)× V (x) that covers K.

Then, we can construct U ′(x) the disjoint set from U(x), so m(∪U ′(x)× V (x)) ≤ 1 · ε.
With ε method, generalise this to unbounded set. Also, it is trivial to prove zero set with

slice on them is non-zero.
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6 Lebesgue Integral

We first take f : Rn → R+. For simplicity, we may use n = 1 in most of the time.

Definition. Undergraph and Completed graph of f :

1. Undergraph of f :
U(f) = {(x, y) ∈ Rn+1|0 ≤ y < f(x)}

2. Completed of f :
Û(f) = {(x, y) ∈ Rn+1|0 ≤ y ≤ f(x)}

Definition. (Lebesgue) Measurable Function f : f is a measurable function if and only if
Uf is measurable in Rn+1.

Also, we say f is Lebesgue integrable if Uf <∞ and write Uf =
∫
f .

Here we do not the dx in Riemann sense because we want to emphasis that it is the
Lebesgue measure of undergraph.

When we say fn →a.e. f , it means that almost every point in Domain of fn converge to
f .

Theorem 6.1. Monotone Convergence Theorem: If fn ↑a.e. f and every fn is measurable,
We have f measurable, and

∫
fn →

∫
f .

Proof. This is simply an application of measure continuity theorem.

Definition. Lower and Upper envelope sequence: For fn be a sequence of functions.

1. Lower envelop
¯
fn := infk≥n fk

2. Upper envelop f̄n := supk≥n fk

Obviously, f̄n is decreasing and
¯
fn is increasing as n→∞.

With this we have∫
f̄n = m(∪∞k=nU(fk)), and

∫
lim
n→∞

f̄n = m(∩∞n=1 ∪∞k=n U(fk))

And ∫
¯
fn = m(∩∞k=nU(fk)), and

∫
lim
n→∞¯

fn = m(∪∞n=1 ∩∞k=n U(fk))

Theorem 6.2. Fatou’s Lemma:∫
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn

Proof. Because
¯
fn is increasing, with MCT, we know

∫
limn→∞

¯
fn = limn→∞

∫
¯
fn and

¯
fn ↑ f

to some measurable f .
For each fn, we have fk ≥

¯
fn ∀k ≥ n, so infn→∞

∫
fn ≥

∫
¯
fn, the inequality still holds

when we take limit.
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Corollary 6.2.1 (Reverse Fatou). Suppose fn < g and g is integrable. We have lim sup
∫
fn ≤∫

lim sup fn.
This can be simply deduced as Fatou.

Theorem 6.3. (Lebesgue) Dominant Convergence Theorem:
If fn → f pointwisely, and each fn is bounded by an integrable function g,

∫
fn →

∫
f

Proof. The convergence of fn gave us that lim inf fn = lim sup fn, so
∫

lim inf fn =
∫

lim sup fn
From Fatou’s lemma and reverse Fatou, we know∫

lim inf fn ≤ lim inf

∫
fn ≤ lim sup

∫
fn ≤

∫
lim sup fn

The boundeness of fn guarantees the last inequality holds, and the
∫

lim inf fn =
∫

lim sup fn
let us know equation holds everywhere.

Definition. f-translation Tf : Tf (x, y) = (x, y + f(x)).

Theorem 6.4. If f is integrable Tf is a mesiometry.

Proof. When f is an step function, it would be trivial. Also, we have Uf ∪ Tf (Ug) =
U(f + g) = Tg(Uf) + Ug.

Then for each cube Kn+1, we can construct an g = χKn , than, m(Uf) +m(Tf (K
n+1)) =

m(Tg(Uf)) +m(Kn+1).
So m(Kn+1) = m(Tf (K

n+1)). Since every measurable set can be sandwich by Gδ and
Fσ, the result follows.

7 Italian Measure Theory

Although in Lebesgue Integral, we do not write dx as the differential term, we may still write∫
fdx to indicate the integration variable.

Proposition 7.1. Cavalieri’s Principle: Suppose the E ∈ Rn+m is measurable, x ∈ Rn, Ex
is measurable a.e., and the function x→ m(Ex) is also measurable. Moreover,

m(E) =

∫
m(Ex)dx

Proof. This holds true when E is zero set or cube, so it holds true of any open set.
Consequently, it still hold true for every bounded set, with ε-method, this can be gener-

alised to every measurable set.

Theorem 7.1. Preimage definition of measurable function is equivalent to Undergraph
definition of measurable function.

Proof. From Preimage definition to Undergraph definition can be deduced by characteristic
function and monotone.

From Undergraph to Preimage: From Cavalieri’s Principle, (Uf)y is measurable almost
everywhere, and it is obvious that (Uf)y = {x|f(x) ≥ y}. Obviously, (Uf)y ⊃ (Uf)y′ if
y ≤ y′ So we may choose an yi ↓ y with (Uf)y′ measurable. By measure continuity theorem,
the result follows.
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Theorem 7.2. Fubini’s theorem: f(x, y)→ R is measurable,then∫ ∫
fx(y)dydx =

∫ ∫
fy(x)dxdy =

∫
f

Proof. This is trivial from Cavalieri’s Principle.

8 Vitali Coverings and Density Points

Definition. Vitali Covering:
For a set S and V a covering of S, if ∀ε > 0, p ∈ S, ∃V ∈ V s.t. p ∈ V, diam(V ) ≤ ε.
diam(.) is the diameter of a given set.

Theorem 8.1. Vitali’s Covering Theorem:
If V is a closed ball Vitali Covering of set S, exist a countable subcollection of V , says

∪∞i=1Vi = U s.t.

1. Vi, Vj disjoint to each other.

2.
∑∞

i=1m(Vi) < m∗(S) + ε

3. m∗(S \ U) = 0

We call this U covers S efficiently (almost every S).

Proof. Firstly assume S is bounded. Covers S with a open set W with m(S) < m∗(S) + ε,
retake V = W ∩V0 with V0 the original Vitali covering. We have supV ∈V diam(V ) ≤ ∞ now.
Then, construct a sequence of U similar to 8.1.1, it is the desired efficient covering.

It must satisfy (1),(2) for sure. Take Un = ∪ni=1Bi, it is closed , obviously. So we have
{B ∈ V , B ∩ Un = ∅} still a Vitali covering that covers S \ Un. Moreover, We have ∪∞n Bi a
collection of ∪∞i=n5Bi ⊃ {B ∈ V , B ∩ Un = ∅} ⊃ S. So ∪∞i=n5m(Bi) > m∗(A \ Un).

With ∪∞i=n5m(Bi)→ 0, (3) holds spontaneously.
For the unbounded case, approaching it from bounded subspace, the results follows.

Lemma 8.1.1. Vitali’s Covering Lemma:
In a separable metric space, for any collection of closed balls F = {Bi|i ∈ J} with

sup{diam(Bi)|i ∈ J} ≤ ∞, we can find a countable disjointed collection of balls ∪∞i=1Bji

with
∪∞i=15Bji ⊃ ∪i∈JBi.

5B means B still centred in the same place, only the diameter expends five times.

Proof. Firstly, suppose F is bounded.
Set R0 = supB∈H diam(B), pick Bj1 with diam(Bj1) >

1
2
R0

Iteratively, letHi = {B|B ∈ Hi−1, B∩∪i−1k=1Bjk = ∅}, Bji with diam(Bji) >
1
2

supB∈Hi−1
diam(B).

Collect each Bji and construct U = ∪∞i=1Bji , if B ∩ U 6= ∅ we have B ⊂ 5U simply from
triangular inequality.

Because F is bounded, we have diam(Bji) → 0. Thus, for each B ∈ Fdiam(B) > 0, it
must fall out from some Hn.

Bounded cased is proved.
Fro the unbounded case, We can approach the unbounded F by countable increasing

closed set. The result follows.
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8.1 Density Point

Definition. Density:
We say the concentration of measurable set E in Q is

m(E ∩Q)

m(Q)

Or [E : Q] for simplicity
So we say the density of E in p, a point in E is

lim
Q→p

[E : Q]

Or δ(E, p) for simplicity, and δ̄,
¯
δ as limit inf and limit sup.

If δ = 1 we say the point is a density point.

Theorem 8.2. Lebesgue Density Theorem:
If E is measurable, δ(p, E) = 1 for almost every p ∈ E.

Proof. Fix an 1 > a > 0. Define Xa = {x|x ∈ E,
¯
δ(x,E) < a}. It means for every p ∈ Xa,

we can find a closed cube Q such that x ∈ Q, |Q| < ε, and [E : Q] < a. Collect all these Q.
Obviously, it is a Vitali Covering.

By VCT, we may have an ∪NQi that covers Xa efficiently, then we have

m∗(Xa) <
∑

m(Qi) + ε

=
∑

m(Qi ∩Xa) + ε

≤ a
∑

m(Qi) ≤ a(m∗(Xa) + ε)

Since ε and a are arbitrary, the result follows.

9 Lebesgue Calculus

Definition. Average and density of a function:
Average of f on a measurable set A is∫

−
A
f =

1

m(A)

∫
A

f = [f : A]

.
Density of f on a point p is

δ(p, f) = lim
Q↓p

[f : Q]

Theorem 9.1. Average Value Theorem:
Take a locally integrable function f ,

f(p) = δ(p, f)

almost every p in domain.

11



Proof. WOLG, We may refrain f on an interval X and assume f > 0. Given α > 0,
Ik = [kα, (k + 1)α), I−1k = f−1k . Suppose f(p) ∈ Ik, Write

∫
−
Q
f =

1

m(Q)
(

∫
A∩Q

f +

∫
B∪Q

f +

∫
C∪Q

f)

with A = ∪k−1i=0 I
−1
i , B = I−1k , C = ∪i>kI−1i .

With [A : Q]→ 0 and [B : Q]→ 1, and f is bounded in A,B, we have [A : Q](
∫
−A∩Q f) +

[B : Q](
∫
−B∪Q f) bounded in [kα, (k + 1)α] when m(Q)→ 0.

For the third term, truncate f with fn = min(f, n), and gn = f − fn. Because f is
integrable, we know

∫
gn → 0. Pick

X(α, gn) = {x|δ̄(x, gn) > α}

It is easily to see that m(X(α, gn))→ 0 from 9.1.1. So X(α, gn)c = X a.e.
That is, for almost every p, we may find an n s.t. δ̄(p, gn) ≤ α.
So the third term is

1

mQ

∫
C∩Q

fn +
1

mQ

∫
C∩Q

gn

The first one tends to 0 as [C : Q]→ 0, the second one is smaller than α.
Combine all of three terms, we have [f : Q] ∈ [kα, (k + 2)α] for almost every p. With

α→ 0, the result follows.

Lemma 9.1.1. Chevyshev’s Density inequality:
Define Xa,f = {x : δ̄(x, f) > a},

a ·m(Xa,f ) ≤
∫
f.

Proof. For each x ∈ Xa,f , we have a small Q covers x and [f : Q] > a. Collect these
Q, its a Vitali covering. We may find a efficient covering V = ∪NQi covers Xa,f with
a ≤ [f : Qi] =⇒ a ·m(Qi) ≤

∫
Qi
f .

So

a ·m∗(Xa,f ) ≤
∑

a ·m(Qi) ≤
∑
N

∫
Qi

f ≤
∫
f

The result follows.

Corollary 9.1.1. Assume a f : [a, b] → R is integrable. Take F (x) =
∫ x
a
f(x), we have

F ′(x) = f(x) a.e.

Proof. From the Average Value Theorem, we have Q is actually an interval, so

lim
h→0

F (x+ h)− F (x)

h
= lim

h→0

∫
−
h
f(t) = f(x)

Same for [x− h, h].

12



Definition. Absolutely Continuous: For every ε > 0, exist an δ > 0 s.t. If
∑n

i=1 |[ai, bi]| < δ,∑n
i=1 |f(ai − bi)| < ε, and [ai, bi] disjoints to each other.
Measure Continuous: If Z is a zero set, m(f(Z)) = 0.

Theorem 9.2. Lebesgue’s Fundamental Theorem:
Take f : [a, b]→ R integrable, and F (x) =

∫ x
a
f(t)dt, then:

1. F is absolutely continuous.

2. F ′ = f a.e.

3. If G absolutely continuous, and G′ = f , G− F = c.

Proof. Assume f > 0 WLOG.

1. If f is bounded in M , it is obvious that
∑
m(F (Ik)) ≤

∑
Mm(Ik). For any epsilon >

0, we may pick δ = ε
M

, so F is absolutely continuous.

If not, we can chop f into fn = fχf(x)<n and gn = f − fn. It is obvious that fn → f
and

∫
gn → 0.

For each ε, pick n such that
∫
gn < ε/2.

We may find a δ for the fn function that satisfies the absolutely continuous condition
on ε/2. Then, for the disjointed intervals Ik with sum less than ε,∑

m(F (Ii)) =
∑∫

Ii

fn + gn ≤
∑∫

Ii

fn +

∫
gn ≤ ε

2. This is Corollary 9.1.1

3. Take H = G− F , so H is still absolutely continuous and H ′ =a.e. 0.

Pick a fixed x′ ∈ [a, b], and define X = {x ∈ [a, x′]|H ′(x) = 0}. Fix a ε > 0. For every
x ∈ X, we have

H(X + h)−H(x)

h
≤ ε

2(b− a)

with small h (obviously x ∈ [x, x+ h]). This forms a Vitali covering. We may find an
∪Ii that covers X efficiently. and some N that

∑N
i=1 |Ii| > (x′ − a− r) with r > 0

With the same ε, we may find a δ satisfy the absolutely continuous condition of H in
ε/2. Pick r = δ, and J is the collection of [a, x′]− I, obvious, is still a finite collection
of interval. We have

H(x′)−H(x) =
N∑
i=1

H(Ii) +

|J |∑
i=1

H(Ji) ≤
ε

2
+
ε

2
≤ ε

The former comes from the H(X+h)−H(x)
h

≤ ε
2(b−a) , and the latter comes from absolutely

continuous property.
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10 Lebesgue’s Last Theorem

Theorem 10.1. A monotone function f in [a, b] is differentiable almost everywhere.

Proof. Take D+
Mf(x) as the lim suph→0

f(x+h)−f(x)
h

, and similar for +,−, and M,m.
Define EsS = {x|D−mf(x) < s < S < D+

Mf(x)} with some s < S.

Since for every x ∈ EsS it is contained in some small [x − h, h] such that f(x)−f(x−h)
h

<

s. We may has an efficient covering L = ∪N[ai, bi]that covers EsS with f(a)−f(b)
a−b < s for

each interval. Similar for the R which is another efficient covering that f(a)−f(b)
a−b > S, and

moreover, Ri ∈ Lj for some j. Thus, with Lemma 10.1.1,

m∗(EsS) ≤ m(R) =
∑
i

∑
Rj∈Li

|Rj| ≤
∑
j

s

S
|Lj| ≤ (

s

S
m∗(EsS)) + ε

. So EsS is zero set for any s, S. Change +,− and M,m in the same way. We proved that
derivative existed a.e.

In addition, we may prove the f ′(x) is finite a.e. Define gn(x) = n(f(x+ 1
n
)− f(x)). gn

is measurable and gn → f ′ a.e., so f ′ is measurable, too.
Then,

∫ b
a
f ′ =

∫ b
a

lim infn→∞ gn ≤ lim inf
∫ b
a
gn,

We have
∫ b
a
gn = n

∫ b+1/n

b
f − n

∫ a+1/n

a
f(take f = f(b) if x > b.) The first one is f(b),

and the second one is bigger than f(a). Combine we have
∫ b
a
gn ≤ f(b) − f(a). The result

follows.

Lemma 10.1.1. Chebyshev’s Lemma:
If f is monotonely increasing on [a, b], f(b)−f(a)

b−a = s take I = {[a′, b′] ⊂ [a, b]|f(b
′)−f(a′)
b′−a′ >

S}, S > s and each interval in I is disjointed. Then we have

|I| ≤ s

S
(b− a)

Proof. Because f is nondecreasing, s(b − a) = (f(b) − f(a)) ≥
∑

[a′k,b
′
k]∈I

f(b′k) − f(a′k) ≥∑
[a′k,b

′
k]∈I

S(b′k − a′k).

Corollary 10.1.1. Lipschitz function is differentiable a.e.

Definition. Bounded Variation of a function f on S:
For every partition P of S:

∑
P ∆f < C with C is a constant. We say P is of B.V.

Theorem 10.2. An absolutely continuous function on [a, b] is of B.V.

Proof. We may find an δ > 0 such that
∑∞

i=1 |bi − ai| ≤ δ =⇒
∑∞

i=1 |f(bi)− f(ai)| < 1.
We may dissect [a, b] = ∪Mk=0[a+ kδ, a+ (k+ 1)δ]. So in each interval, the B.V. is smaller

than 1, the total B.V, as a result, smaller than M .

Corollary 10.2.1. An function f of B.V is differentiable a.e.

Proof. We may write f as subtraction of two increasing function. (How?) Because increasing
function is differentiable a.e., so is their subtraction.

Theorem 10.3. Lebesgue’s main theorem:
Lebesgue’s fundamental theorem is the if and only if relation.
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11 Additional Topics

Here we talk about some other things I am lazy to categorise.

11.1 Littlewood’s Three Principles

Littlewood introduced the concept of ”nearly”. which meas except an ε set with ε > 0.

Theorem 11.1. Littlewood’s First Theorem:
For every measurable set, it contains an compact set that is nearly the set.

Which is the regularity of measurable set.

Theorem 11.2. Littlewood’s Second Theorem:
Every measurable function is nearly continuous.

Proof. The codomain of the function f can be covered by rational endpoints Ii = (qj, ql),
which is countable and take Ei = {f ∈ Ii}, which is sandwiched by some closed and open
sets Ki ⊂ Ei ⊂ Ui with m(Ui \ Ki) ≤ ε/2i. Take Si = Ui \ Ki, so m(∪Si) ≤ ε and define
T = (∪Si)c.

Suppose ∀xk ∈ T , xk → x ∈ T , fixed an σ > 0. We must have some |Ij| ≤ σ and
f(x) ∈ Ij, and obviously, x ∈ Ej ⊂ Uj. From the openess of Uj we know for some K,
xk ∈ Uj if k > K. Moreover, because xk not in Si, it must be in Ki, too. xk ∈ Ej as well.
Consequently, f(xk) ∈ Ej, and |f(xk)− f(x)| ≤ σ.

Theorem 11.3. Littlewood’s Third Theorem:
Almost everywhere convergence (of measurable function on a compact interval [a, b])

implies nearly convergence.

Proof. fn → f a.e. imply for every l, define Xk,l = {x||fk > f | > 1
l
}, Xk,l →a.e. [a, b]. as

k →∞
Fix an ε > 0, we can construct a sequence Xk(l),l with m(Xc

k(l),l) ≤
ε
2l

. Take l ∈ N, we

have m(∪Xc
k(l),l) < ε so (∪Xc

k(l),l)
c = ∩Xk(l),l differ from [a, b] with only an ε set.

In the ∩Xk(l),l, for any given σ > 0, we may find an 1/l < σ, so for all x ∈ Xk(l),l,
|fn(x)− f(x)| ≤ 1/l < σ.

Because Xk(l),l ⊃ Xk(l),l, the result follows.

11.2 Lp spaces

Definition. Lp norm of a function f is (
∫
|f |p)−p = ||f ||p.

If p =∞, we have ||f ||∞ = inf c||f | < c a.e.

Theorem 11.4. Holder’s inequality:
||fg||1 < ||f ||p||g||q with 1

p
+ 1

q
= 1
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Proof. Young’s Inequality: ab ≤ ap

p
bq

q
with 1

p
+ 1

q
= 1

Take a = |f |/(||f ||p)1/p, b = |g|/(||g||q)1/q, so∫
ab ≤ 1

p

∫
ap +

1

q

∫
bq = 1

.
Replace a, b with original form, the result follows.

Because I use LATEX, I am too lazy to use the o with two dots.

Theorem 11.5. Minkowski’s Inequality:

||f + g||p ≤ ||f ||p + ||g||p

with p > 1.

Proof.

||f + g||pp =

∫
|f + g|p ≤

∫
|f ||f + g|p−1 +

∫
|g||f + g|p−1

≤ (||f ||p + ||g||p)(
∫
|f + g|(p−1)

p
p−1 )

p−1
p (with Holder)

≤ (||f ||p + ||g||p)(||f + q||p−1p )

Cancel two side and get the answer.

Theorem 11.6. For fn → f in Lp, there’s a subsequence such that fnk
→a.e. f

Proof. Converge in Lp implies converge in measure by Chebyshev’s inequality.
Take En = {x||fn − f | > εn}, we can find a εn → 0 and subsequence s.t. m(En(k)) <

1
2k

.
With the Boreal-Cantalli Lemma (11.6.1), we know m(lim supEn) = 0. This is equivalent

to fn →a.e. f .

Lemma 11.6.1. Boreal-Cantalli Lemma: If
∑
m(Ei) ≤ ∞, m(lim supEi) = 0.

Proof. It is easy because lim supEi = ∪∞j=iEj, so m(lim supEi) ≤
∑∞

j=iEj. The latter
converge to zero.
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