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1 Definition of Differential form

In physics, we have the problem of potential energy. For example, suppose a butterfly flies
with the cure C(t) ∈ X × Y , and Y is the horizontal axle. Assume that the Energy Field is
F . Then, what is the butterfly’s increasing of potential energy?

Suppose t ∈ [0, 1]. We know that we can write this question as∫ 1

0

F (x(t), y(t))
dy(t)

dt
dt

. Since this kind of problem is frequently seen (maybe?, I don’t know, I study computer
science.), we might rewrite it as ∫

C

F (C)dy

Means integral on C, and y is the ”direction” we care.

1.1 Some Terms

In the previous example, C is a curve and y is the direction we care. However, we may not
only care a curve (perhaps a surface), and not only care a direction. Then, what we do?

Definition. K-cell ϕ on Rn : We assume ϕ is smooth, Ik is the cube [0, 1]k and ϕ maps
Ik → Rn

In k = 1, it is obviously, a smooth curve.

We define Ck(Rn) as the set of all k-cell on Rn.

Definition. Differential k−form in Rn: Suppose we have a k−cell ϕ on Rn, and we only
care some directions I = {i1, i2., ..., ik} ∈ n. (Must be a full k). If we weight each ϕ a value
F : Rn → R, we define the integral of ϕ with previous mentioned care terms as∫

ϕ

FdyI =

∫
Ik
F (ϕ(u))

∂ϕI
∂u

du (1)

Here, the ∂ϕI

∂u
is the determinant of the Jacobian matrix ϕI over u.

For notation’s convenience, We represent Ik ∈ Rk as u = (u1, u2, ...uk) (sometimes use
x). And, ϕ : Ik → Rn as ϕ((u1, u2, ..., uk)) = (ϕ1, ϕ2, ..., ϕn)(u) = (y1, y2, .., yk)

1



1.2 Reparameterization, Form Name, and Wedge Product

These are fundamental. Just google them.

2 Exterior Differentiation

Actually, I don’t really know why we initially do this. I just guess the origin. Perhaps We
need exterior differentiation because we also want to know what will happen if the fI drift
away from the yN−I directions.

So we define d(fIdyI) as
∑n

i=1
∂fI
∂yi
dyi ∧ dyI = (dfI) ∧ dyI .

2.1 Property of exterior Differentiation

Theorem 2.1. Some property of the exterior Differentiation:

1. d is a linear operator.

2. d(α ∧ β) = d(α) ∧ β + (−1)kα ∧ dβ

3. d2 = 0.

The proof of these theorem are just following from definition.

3 Pushforward and Pullback

Suppose T : Rn → Rm, ϕ ∈ Ck(Rn) is a k-cell and ω is a k−form in Rm. Then, if we send
the value of ϕ to Rm with T , we have a k−form on Rm ,which is T ◦ϕ. We now can calculate
the value of

∫
Tϕ
ω. Now, we know the

∫
T
ω is a functional of Ck(R

n). We want to find the
α s.t. ∫

Tϕ

ω =

∫
ϕ

α.

And we assume T ∗ as the mapping of ω and T ∗(ω) = α.
To avoid the abuse of notation, T∗ : Ck(Rn)→ Ck(Rm) with T∗(ϕ) = T ◦ ϕ

For simplicity, assume I = {1, 2, ..., k}.

Theorem 3.1. T ∗ (fdzI) = (f ◦ T )dT1 ∧ dT2 ∧ ... ∧ dTk

Proof. Pick an arbitrary ϕ : Ik → Rn, and k−form in Rm fIdzI We have∫
T∗(ϕ)

fIdω =

∫
Ik
fI ◦ T (ϕ(u))

∂(T (ϕ(u)))I
∂u

du. (2)

We have
∂(T (ϕ(u)))I

∂u
du =

∂(TI(ϕ(u)))

∂u
du =

∑
A

{∂(TI)

∂yA
}y=ϕ(u)

∂ϕ(u)

∂u
du
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Note that there is a usage of the representation for Cauchy-Binet Formula. Then, by the
writing of differential form, we have (2) written this way:

T ∗(fIdzI) = f ◦ T
∑
A

∂(TI)

∂yA
dyI

For the f ◦ T dT1 ∧ dT2...dTk part, with simple expansion of part, we have

dT1 ∧ dT2...dTk = (
n∑
1

∂T1
∂yi

dyi) ∧ ... ∧ (
n∑
1

∂Tk
∂yi

dyi) (3)

From the fact that wedge term cannot repeat(or equal to 0), we have (3) equals to :∑
A

∑
σ(A)

sig(σ)
∂T1
∂yσ1

...
∂Tk
∂yσk

dyA

It equals to
∑

A
∂TI
∂yA

dyA by Leibniz formula. With simple comparison we know they are
equal.

Theorem 3.2. T ∗(α ∧ β) = T ∗(α) ∧ T ∗(β)

Proof. This one is simple from the fact that T ∗(a dα∧b dβ) = (a◦T )(b◦T )T ∗(dα∧dβ) =
T ∗(dα) ∧ T ∗d(β). The result is transparent.

Theorem 3.3. T ∗(dω) = dT ∗(ω)

Proof. Take f as a 0 form.

T ∗(df) = T ∗(
m∑
i=1

∂f

∂zi
dz)

=
m∑
i=1

T ∗(
∂f

∂zi
)(dz)

=
m∑
i=1

∂f

∂zi
◦ T (dTi)

=
n∑
j=1

m∑
i=1

∂f

∂zi
|z=T (y)

∂Ti
∂yy

dyj = d(f ◦ T ) = dT ∗ (f)

With previous theorem, we know the result holds.
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4 Stock’s Formula

Theorem. ∫
∂M

ω =

∫
M

dω

Before the proof, we need to define the ∂ of the cell M . Intuitively, it is the margin of M

Proof. Here is the step of the proof:

1. Observe the case of n− 1 form (of Rn) on cube Ik.

2. Generalise what is the ∂.

3. Use pushforward and pullback to calculate the general case.

Here is the extend of each steps:

1. Suppose ω = fdx−j, with dx−j means dx1 ∧ ... ∧ dxj−1 ∧ dxj+1 ∧ ... ∧ dxn. Then,
dω = (−1)j+1 ∂f

∂xj
dxN , with N = {1, 2, ..., n}. So

∫
Ik
dω =∫

Ik
(−1)j+1 ∂f

∂xj
dx1dx2...dxn

=

∫ 1

0

...

∫ 1

0

(−1)j+1f(..., xj−1, 1, xj+1)− f(..., xj−1, 1, xj+1)dx1...dxj−1dxj+1...dxn

2. From the previous observation, we know that we may assume

∂Ik =
k∑
i=1

(−1)i+1(xj,1 − xj,0)

With x ∈ Ik−1 and xj,k = (x1, x2, ...xj−1, k, xj+1, ..., xn). Similarly, define ϕ a k−form

on Rn, ∂ϕ =
∑k

i=1(−1)i+1(∂(xj,1)− ∂(xj,0)). We will see the definition is well-defined
in next step.

3. Naturally, we can regard the ϕ ∈ Cn(Rm) as a pushforward function. τ : In → In an
n−cell in Rn. If ω is an n− 1 form in Rm. Then,∫

ϕ

dω =

∫
τ

ϕ∗dω =

∫
τ

dϕ∗ω =

∫
∂τ

ϕ∗ω =

∫
ϕ(∂τ)

ω =

∫
∂ϕ

ω (4)

Here, the φ∗ after the third equation plays the role of pulling Ωn−1(Rm)→ Ωn−1(Rn).
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4.1 Example: Divergent and Curl

Here, fx means ∂f
∂x

.

Theorem 4.1 (Green’s Theorem).∫ ∫
D

(gx − fy)dxdy =

∫
C

fdx+ gdy

C is the boundary of D with positive direction.

Theorem 4.2 (Green’s Divergent Theorem).∫ ∫ ∫
D

div F =

∫ ∫
S

flux F

Here, F =< f 1, f 2, f 3 >, and div F =< f 1
x , f

2
y , f

3
z > and flux F is f 1dydz+f 2dxdz+f 3dxdy

We may take the F as curl of some function G = (g1, g2, g3), so we have the Stoke’s curl
theorem.

5 Close and Exact Form

Assume ω is a k−form .

Definition. ω is closed is dω = 0. ω is exact is ∃α s.t.dα = ω.

5.1 Cohomology

Definition. Suppose U is a open set.
Bk(U) is the exact k−form on U . Zk(U) is the closed k−form on U .

Hk(U) = Zk(U)/Bk(U)

This is the quotient concept from algebra.
What is simply connected domains: https://www.youtube.com/watch?v=9jyKUjbUjSg

5.2 Poincare’s Lemma

Theorem. If U = Rn, Hk(U) = {0}

Proof. Here is the step of proof:

1. Our goal is to prove exist a integral operator L for all ω = fI(x)dyI such that (dL +
Ld)ω = ω.

2. Prove exist an operator N on axle t s.t. ω′ = f ′I(x, t)dt ∧ dyI and (Nd + Nd)ω =
f(x, 1)− f(x, 0)dyI .
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3. Prove with p(x, t) = tx, we have Np∗ is the L.

Here is the extend of each steps:

1. Obviously, it is a stronger property. Since dω = 0, so Lω is the α we want.

2. Suppose ω ∈ Ωk+1(Rn × R), I is length of k + 1, J is of length of k,and operator Kt

has this property:

Kt(ω) =

{
0 if it is dyI , no dt in this wedge product

(
∫ 1

0
f(y, t)dt)dyJ it is dt ∧ dyJ

(5)

Then, with some calculus, we have that

N t(dw) + dN t(w) = (f(y, 1)− f(y, 0))dyI (6)

3. pick p(y, t) = ty, so with more calculation, we have

L = N ◦ p∗

6 Bouver’s Fixed Point Theorem

Theorem. B is a open ball on Rn, suppose f is a continuous map from B → B Then, B
has a fixed point for f .

Proof. Here is the step of proof:

1. Assume f is infinitely differentiable and |f(x)− x| > µ. Construct a T that map each
x to ∂B from the direction [f(x), x].

2. Prove the fact that T ∗ is a zero map.

3. We have a smooth ϕ : In → B with these property:
(a) ϕ(∂In) = ∂B (b)

∫
In

∂ϕ
∂u
du > 0

4. Then we can find a α = y1dy−1 s.t.
∫
ϕ
dα > 0 but

∫
∂ϕ
α = 0.

Here is the extend of each steps:

1. Since B is closed, from Stone-Weierstrass Theorem, we can construct a F ′ s.t. F ′−F ≤
µ/2. Further construct G = F ′

1+µ/2
, it can map all point in U , a small neighbourhood

of B, into B. Obvious, U still has no fixed point under G.
Here, since no fixed point, and G is smooth, the function T is smooth, too.
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2. With inversion function formula, if (DT )p is invertible in a point t, there is a small
(n-) ball in T (p) that is the image of a neighbourhood of p. However, this is absurd as
T (p) ∈ ∂B. As a result, (DT )p is not invertible. As a result, T ∗(w) = 0 ∀w ∈ Ωn(U).

3. We map the hyper cube [−1, 1]n to the B with φ this way: for each x ∈ [−1, 1]n,
take φ(x) = s(x)x, here, suppose the longest (positive)length in (0, x) direction is l(r).
Then, s(x) = |r|/|l(r)|.
So we take ϕ : Ik → φ(2Ik − 1n), it is smooth, obviously. ∂ϕ = ∂B, which is trans-
parently, too. As for the

∫
Ik

∂ϕ
∂u
du, we know it is the volume of the ball (since it is

orientation-preserved, no need to take its absolute value). It satisfies our requirement.

4. We take α = x1dx2 ∧ ...dxn, do dα = dxN . Then from 3. we have∫
ϕ

dα > 0

However, since T on ∂ϕ is a identity map, and by 2., we also have∫
ϕ

dα =

∫
∂ϕ

α =

∫
T∗(∂ϕ)

α =

∫
∂ϕ

T ∗(α) = 0.

So prove by contradiction, the result follows.
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